Fibroblast KATP currents modulate myocyte electrophysiology in infarcted hearts.

نویسندگان

  • Najate Benamer
  • Carolina Vasquez
  • Vanessa M Mahoney
  • Maximilian J Steinhardt
  • William A Coetzee
  • Gregory E Morley
چکیده

Cardiac metabolism remains altered for an extended period of time after myocardial infarction. Studies have shown fibroblasts from normal hearts express KATP channels in culture. It is unknown whether fibroblasts from infarcted hearts express KATP channels and whether these channels contribute to scar and border zone electrophysiology. KATP channel subunit expression levels were determined in fibroblasts isolated from normal hearts (Fb), and scar (sMI-Fb) and remote (rMI-Fb) regions of left anterior descending coronary artery (LAD) ligated rat hearts. Whole cell KATP current density was determined with patch clamp. Action potential duration (APD) was measured with optical mapping in myocyte-only cultures and heterocellular cultures with fibroblasts with and without 100 μmol/l pinacidil. Whole heart optical mapping was used to assess KATP channel activity following LAD ligation. Pinacidil activated a potassium current (35.4 ± 7.5 pA/pF at 50 mV) in sMI-Fb that was inhibited with 10 μmol/l glibenclamide. Kir6.2 and SUR2 transcript levels were elevated in sMI-Fb. Treatment with Kir6.2 short interfering RNA decreased KATP currents (87%) in sMI-Fb. Treatment with pinacidil decreased APD (26%) in co-cultures with sMI-Fb. APD values were prolonged in LAD ligated hearts after perfusion with glibenclamide. KATP channels are present in fibroblasts from the scar and border zones of infarcted hearts. Activation of fibroblast KATP channels could modulate the electrophysiological substrate beyond the acute ischemic event. Targeting fibroblast KATP channels could represent a novel therapeutic approach to modify border zone electrophysiology after cardiac injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calmodulin kinase II inhibition enhances ischemic preconditioning by augmenting ATP-sensitive K+ current.

Mice with genetic inhibition (AC3-I) of the multifunctional Ca(2+)/calmodulin dependent protein kinase II (CaMKII) have improved cardiomyocyte survival after ischemia. Some K(+) currents are up-regulated in AC3-I hearts, but it is unknown if CaMKII inhibition increases the ATP sensitive K(+) current (I(KATP)) that underlies ischemic preconditioning (IP) and confers resistance to ischemia. We hy...

متن کامل

Instability of spiral and scroll waves in the presence of a gradient in the fibroblast density: the effects of fibroblast-myocyte coupling

Fibroblast-myocyte coupling can modulate electrical-wave dynamics in cardiac tissue. In diseased hearts, the distribution of fibroblasts is heterogeneous, so there can be gradients in the fibroblast density (henceforth we call this GFD) especially from highly injured regions, like infarcted or ischemic zones, to less-wounded regions of the tissue. Fibrotic hearts are known to be prone to arrhyt...

متن کامل

Bone marrow mesenchymal stem cells protected post-infarcted myocardium against arrhythmias via reversing potassium channels remodelling

Bone marrow mesenchymal stem cells (BMSCs) emerge as a promising approach for treating heart diseases. However, the effects of BMSCs-based therapy on cardiac electrophysiology disorders after myocardial infarction were largely unclear. This study was aimed to investigate whether BMSCs transplantation prevents cardiac arrhythmias and reverses potassium channels remodelling in post-infarcted hear...

متن کامل

Enhanced fibroblast-myocyte interactions in response to cardiac injury.

RATIONALE A critical event in the development of cardiac fibrosis is the transformation of fibroblasts into myofibroblasts. The electrophysiological consequences of this phenotypic switch remain largely unknown. OBJECTIVE Determine whether fibroblast activation following cardiac injury results in a distinct electrophysiological phenotype that enhances fibroblast-myocyte interactions. METHOD...

متن کامل

Modelling cardiac fibroblasts: interactions with myocytes and their impact on impulse propagation.

AIMS Existence of myocyte-fibroblast coupling in the human heart is still a controversial question. This study aims at investigating in a biophysical model how much coupling would be necessary to perturb significantly the electrical propagation of the cardiac impulse. METHODS AND RESULTS A one-dimensional model representing a strand of myocytes covered by a layer of fibroblasts was formulated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 304 9  شماره 

صفحات  -

تاریخ انتشار 2013